172,399 research outputs found

    Containment of composite fan blades

    Get PDF
    The development of containment concepts for use with large composite fan blades, taking into account the frangible nature of composite blades is considered. Aspects of the development program include; (1) an analysis to predict the interaction between a failed fan blade and the blade containment structure; (2) scaling factors to allow impact testing using subscale containment rings and simulated blades; (3) the design and fabrication of containment systems for further evaluation in a rotating rig test facility; (4) evaluate the test data against the analytically predicted results; and (5) determine overall systems weights and design characteristics of a composite fan stage installation and compare to the requirements of an equivalent titanium fan blade system. Progress in the blade impact penetration tests and the design and fabrication of blade containment systems is reported

    QIP = PSPACE

    Full text link
    We prove that the complexity class QIP, which consists of all problems having quantum interactive proof systems, is contained in PSPACE. This containment is proved by applying a parallelized form of the matrix multiplicative weights update method to a class of semidefinite programs that captures the computational power of quantum interactive proofs. As the containment of PSPACE in QIP follows immediately from the well-known equality IP = PSPACE, the equality QIP = PSPACE follows.Comment: 21 pages; v2 includes corrections and minor revision

    High-temperature thermal storage systems for advanced solar receivers materials selections

    Get PDF
    Advanced space power systems that use solar energy and Brayton or Stirling heat engines require thermal energy storage (TES) systems to operate continuously through periods of shade. The receiver storage units, key elements in both Brayton and Stirling systems, are designed to use the latent heat of fusion of phase-change materials (PCMs). The power systems under current consideration for near-future National Aeronautics and Space Administration space missions require working fluid temperatures in the 1100 to 1400 K range. The PCMs under current investigation that gave liquid temperatures within this range are the fluoride family of salts. However, these salts have low thermal conductivity, which causes large temperature gradients in the storage systems. Improvements can be obtained, however, with the use of thermal conductivity enhancements or metallic PCMs. In fact, if suitable containment materials can be found, the use of metallic PCMs would virtually eliminate the orbit associated temperature variations in TES systems. The high thermal conductivity and generally low volume change on melting of germanium and alloys based on silicon make them attractive for storage of thermal energy in space power systems. An approach to solving the containment problem, involving both chemical and physical compatibility, preparation of NiSi/NiSi2, and initial results for containment of germanium and NiSi/NiSi2, are presented

    The variable containment problem

    Get PDF
    The essentially free variables of a term tt in some λ\lambda-calculus, FV β(t)_{\beta}(t), form the set (xx _{\mid}^{\mid} u.t=βux\forall u.t=_{\beta}u\Rightarrow x ϵ\epsilon FV(u)(u)}. This set is significant once we consider equivalence classes of λ\lambda-terms rather than λ\lambda-terms themselves, as for instance in higher-order rewriting. An important problem for (generalised) higher-order rewrite systems is the variable containment problem: given two terms tt and uu, do we have for all substitutions θ\theta and contexts CC[] that FVβ(C[t]θ)_{\beta}(C[t]^{\theta}) \supseteq FVβ(C[uθ])_{\beta}(C[u^{\theta}])? This property is important when we want to consider tut \to u as a rewrite rule and keep nn-step rewriting decidable. Variable containment is in general not implied by FV β(t)_{\beta} (t)\supseteq FVβ(u)_{\beta}(u). We give a decision procedure for the variable containment problem of the second-order fragment of λ\lambda^{\to}. For full λ\lambda^{\to} we show the equivalence of variable containment to an open problem in the theory of PCF; this equivalence also shows that the problem is decidable in the third-order case

    Composite containment systems for jet engine fan blades

    Get PDF
    The use of composites in fan blade containment systems is investigated and the associated structural benefits of the composite system design are identified. Two basic types of containment structures were investigated. The short finned concept was evaluated using Kevlar/epoxy laminates for fins which were mounted in a 6061 T-6 aluminum ring. The long fin concept was evaluated with Kevlar/epoxy, 6Al4V titanium, and 2024 T-3 aluminum fins. The unfinned configurations consisted of the base-line steel sheet, a circumferentially oriented aluminum honeycomb, and a Kevlar cloth filled ring. Results obtained show that a substantial reduction in the fan blade containment system weight is possible. Minimization of damage within the engine arising from impact interaction between blade debris and the engine structure is also achieved

    Containment and reciprocity in biological systems : a putative psychophysical organising principle

    Get PDF
    The stuff of life, the living substance that is common to all biological organisms, is the aqueous society of biochemical activity ongoing in every cell in every living body. The basic biochemical ‘reactions’ of life are largely similar with variations of a theme played out in different cells living in different environment, e.g. the core biochemical metabolic processes of all life likely stem from an ancient, early-earth ancestor (Smith & Morowitz, 2004). However, even more common to life than shared biochemistry are the basic structural properties of all cells and all living organisms into complexes of compartmentalised units. In this paper, I will argue there are common feelings driving the generation of these ubiquitous structures in nature and that these feelings may constitute one of several primary forms of feeling in living systems
    corecore